Part II

Mathematical Optimization
Lecture 20

Introduction to Optimization in Imaging and Therapy

20.1 Lecture Objectives

• Set a common mathematical framework for describing optimization problems (regardless of the specific application).

• Understand the difference between an optimization problem (formulation) and an algorithm used to solve such problem.

• Develop intuition for the kinds of optimization problems we face in imaging and therapy applications.

20.2 Standard Optimization Problem

A standard (continuous-valued) optimization problem can be written as follows

\[\begin{align*}
\text{minimize} & \quad f(x) \\
\text{such that} & \quad g_k(x) \leq b_k, \text{ for } k = 1, \ldots, K \\
\text{such that} & \quad h_l(x) = c_l, \text{ for } l = 1, \ldots, L
\end{align*} \]

(20.1)

where \(x = [x_1, \ldots, x_N] \in \mathbb{R}^N \) is the vector we are trying to optimize (please see below for specific examples of \(x \) in imaging applications), the function \(f : \mathbb{R}^N \to \mathbb{R} \) is the objective (or ‘cost’) function that drives our optimization, the functions \(g_k : \mathbb{R}^N \to \mathbb{R} \) together with the scalar values \(b_k \) determine the inequality constraints on \(x \), and the functions \(h_l : \mathbb{R}^N \to \mathbb{R} \) together with the scalar values \(c_l \) determine the equality constraints on \(x \). Together, the inequality and equality constraints determine the allowable values of \(x \) (i.e: the feasible region).

Sometimes we wish to emphasize the fact that we are interested in the choice of \(x \) that solves the optimization problem in Equation 20.1 and not so much in the value of \(f(x) \).
In such cases, we may write our problem as:

\[
\begin{align*}
x^* &= \underset{x}{\arg \min} f(x) \\
&\text{such that } g_k(x) \leq b_k, \text{ for } k = 1, \ldots, K \\
&\text{such that } h_l(x) = c_l, \text{ for } l = 1, \ldots, L
\end{align*}
\]

(20.2)

where the \(\arg \min \) notation denotes “argument minimize”, i.e., the value of \(x \) that solves the optimization problem. In this course, we will denote \(x^* \) as the choice of \(x \) that solves our optimization problem (in compliance with conventional optimization notation).

Note that the formulation given in Equations 24.2 and 20.2 is very general, and includes a wide array of optimization problems encountered in various applications. Very different optimization problems will arise depending on the nature of the objective function \(f \) and the constraint functions \(g_k \) and \(h_l \). Some of these problems are easy to solve, and some are very hard. In this course, we are interested in high-dimensional optimization problems (ie: where \(N \) is large, typically on the order of thousands or even millions), so finding appropriate algorithms that work well in practice is critical. The remainder of this portion of the course will dissect the general formulation in Equation 24.2 and various algorithms used to solve it. Importantly, this leads us to the first fundamental concept of this course: the distinction between a formulation and an algorithm.

- **Formulation**: in the context of this course, a formulation defines an optimization problem, ie: “find a vector \(x \) that minimizes some objective function, subject to a set of constraints”. Note that the formulation makes no claims about how one might go about finding such optimal vector; that is where the algorithm comes in.

- **Algorithm**: a step-by-step procedure for solving a problem such as the optimization problem (Equation 24.2) described above.

Why is it important to distinguish these two concepts? Because, in the instructor’s experience, this is likely to lead to better research (eg: technical development), improved ability to communicate one’s research (eg: writing papers), and improved ability to understand others’ research (eg: reading papers). For instance, an optimization problem (formulation) may be solved using a specific algorithm today, but a different algorithm tomorrow (assuming the new algorithm is better, eg: faster) without altering the fundamental nature of the solution.

Exceptions: There are cases where the algorithm itself is used to drive the specific solution that is reached, which is therefore not determined solely by the formulation. Notable examples of this approach can be found in the training of neural networks for machine learning. For instance, consider the “dropout” technique\(^1\) often used during the training of neural networks in order to avoid convergence to certain solutions in favor of others.

One way to view this is that the choice of algorithm parameters introduces implicit modifications in the formulation. In these cases, the tidy separation between formulation and algorithm becomes blurred.

20.3 Optimization Applications

Next, we will preview a few of the applications of optimization to be covered in this course, including the possible meanings of the objective function and constraint functions in image reconstruction, segmentation, and registration.

20.3.1 Image Reconstruction

In image reconstruction, regardless of imaging modality (MRI, CT, PET, SPECT, etc) we typically seek to estimate an image from a set of measurements (denoted c_l). This desired image is indeed our vector x (even if the image is to be displayed as a 2D or 3D array after reconstruction, conceptually we can consider it a vector for mathematical manipulation). In a simple image reconstruction formulation, the objective function calculates the energy of the image, and the equality constraints force the estimated image to match the acquired data:

$$\text{minimize } \sum_{n=1}^{N} |x_n|^2$$

such that $h_l(x) = c_l$, for $l = 1, \ldots, L$ (20.3)

where the functions h_l capture the imaging physics, eg: calculate different Fourier Transform coefficients in the case of MRI, and perform projections along different angles in the case of CT. This simple formulation would seek the image with lowest energy among all the possible images that match the acquired data.

Now, why would we formulate the image reconstruction this way (by minimizing the image energy)? This type of formulation (similar to Tikhonov regularization) helps prevent noise and artifacts from blowing up in image reconstruction. We will revisit this topic in the image reconstruction portion of the course.

20.3.2 Image Segmentation

A traditional formulation for segmentation of an input image y is the Potts model, which can be written as:

$$\text{minimize } \| \nabla x \|_0 + \| x - y \|_2^2$$

(20.4)

where ∇ performs a gradient operation, and the $\| \cdot \|_0$ notation is the ℓ_0 metric, that simply calculates the number of non-zero entries in a vector (in this case, the number of points
with non-zero gradient). In other words, this formulation seeks a piecewise-constant approximation x to the original image y. Further, the ‘regularization’ parameter γ balances the importance of the two terms in the objective function (ie: ‘flatness’ vs closeness to the input image). Note that this specific optimization problem is ‘unconstrained’, ie: it has an objective function but no constraints.

Question: Can you devise a constrained formulation that accomplishes similar goals to the unconstrained segmentation formulation shown in Equation 20.4 above?

Also, note that this segmentation formulation is defined in terms of a continuous-valued vector. However, image segmentation is generally a bit different from the formulation given in Equation 24.2 in that the desired vector x is often not real-valued, but rather a discrete-valued vector that may take on one of several possible values (2 in the case of binary segmentation) at each location. We will briefly review discrete optimization later in the course.

20.3.3 Image Registration

Registration of input images y_1 and y_2 can be described as a pixel-wise geometric operation on y_2 that makes it closely aligned (co-registered) with y_1.

$$\minimize E(y_1, r(y_2, x))$$

where the function r applies a geometric distortion to y_2, as parameterized by x, and the function E calculates a measure of dissimilarity between y_1 and $r(y_2, x)$. Typical choices for E are based on measures of mutual information using entropy, and seek to penalize images that contain features (eg: edges) at different locations. We will review more advanced image registration formulations and algorithms later in the course.

Question: Can you devise a more advanced version of the registration formulation shown in Equation 24.5 above, including additional terms or constraints on the specific geometric distortion? Note that, for most registration applications, we consider certain geometric distortions (moderate, spatially smooth, physically feasible, etc) as more likely than others (very severe, spatially rough, physically infeasible, etc).

20.3.4 Dose Distribution in Therapy Planning

We can consider a therapy planning scenario where we can apply a number N of different treatment beams at different locations and different angles. Each of these beams has different intensity (or “fluence” including intensity and time) that we can control. Through a process that is assumed to be well understood through separate experiments or Monte-Carlo simulations, these N applied beams lead to a different dose in each of M voxels within a volume of interest. Note that this volume will contain voxels (in or near identified lesions) where we wish to apply a relatively high dose for the purpose of treatment, and other voxels (typically farther from lesions) where we wish to apply a low
or zero dose. Thus, a key component of therapy planning is the determination of the fluence of our treatment beams in order to match a target dose distribution as closely as possible. This problem can be naturally framed as an optimization problem. Importantly, this formulation will typically be constrained by some physical or other constraints (for example, that the intensity of each beam be non-negative), as follows:

\[
\begin{align*}
\text{minimize } f(y) &= \sum_{m=1}^{M} w_m (y_m - d_m)^2 \\
\text{such that } y &= Dx \\
\quad &\quad x \geq 0,
\end{align*}
\]

where \(x \in \mathbb{R}^N\) represents the intensity of each applied beam (i.e., the fluence map), \(y \in \mathbb{R}^M\) represents the distribution of dose at each voxel, \(d \in \mathbb{R}^M\) represents the desired target dose at each voxel, the matrix \(D \in \mathbb{R}^{M \times N}\) describes how each applied beam’s intensity leads to dose at each voxel, and the constraint \(x > 0\) indicates that the intensity of each individual beam needs to be non-negative. Finally, the penalty functions \(w_m(\cdot)\) describe how we wish to penalize deviations from the target dose distribution: for example, \(w_m(y_m - d_m)\) may be zero for \(y_m - d_m = 0\), and will grow with increasing \(|y_m - d_m|\). However, there is a lot of flexibility in this formulation. For example, we may wish to penalize positive values of \(y_m - d_m > 0\) differently from negative values of \(y_m - d_m < 0\), we may wish to impose steeper penalties for excessive dose at voxels \(m\) that are far away from the lesion, etc. Finally, additional inequality constraints are often relevant, such as bounding the dose deposited in certain organs such as the spinal cord.

20.4 Formulations

A few essential types of formulations include:

- Linear vs non-linear
- Quadratic vs non-quadratic
- Convex vs non-convex
- Constrained vs unconstrained

In particular, the concept of convexity is of enormous theoretical and practical importance, as it is closely related to the ability to guarantee global optimality for iterative algorithms. These concepts will be studied over the next few lectures.

20.5 Algorithms

Most optimization problems are solved iteratively using an algorithm that provides a progressively better and better solution (ie: one that yields a smaller and smaller value of the objective function). An enormous variety of algorithms for optimization exist, including:

- Coordinate descent
- Gradient (steepest) descent
- Conjugate gradients
- Newton’s method and its variants
- Stochastic gradient descent

as well as many others. Note that the choice of iterative algorithm often presents a trade-off between the complexity required to complete each iteration, and the number of iterations required to reach the solution.